Контактный телефон:
(3952)   97-50-85

 

9. Высотные сооружения

Нормативная литература
О компании

 

Высотные сооружения

9.1. Градирни

9.1.1. Градирни предназначены для охлаждения воды в системах оборотного водоснабжения, в которых вода является средством отведения больших количеств тепла от энергетических и промышленных агрегатов.

Своды правил настоящего раздела следует соблюдать при проектировании строительных конструкций вентиляторных и башенных градирен.

Примечание – Своды правил не распространяются на проектирование поперечно-точных и радиаторных (сухих) градирен.

9.1.2. Основные габаритные размеры (в плане и по высоте, размеры воздуховходных проемов и др.), а также выбор типов градирен следует устанавливать на основе требований СП 31.13330, а также технико-экономических расчетов.

9.1.3. Форму градирен в плане следует принимать:

для вентиляторных секционных – квадратную или прямоугольную с отношением сторон не более 4:3;

для башенных и односекционных – круглую, многоугольную или квадратную.

9.1.4. Высоту уровня воды в водосборных резервуарах градирен надлежит принимать не менее 1,7 м, а расстояние от наивысшего уровня воды в резервуаре до верха его борта – не менее 0,3 м.

Для градирен, располагаемых на крышах зданий, допускается устройство поддонов с глубиной воды не менее 0,15 м.

9.1.5. Верх фундаментов градирен, а также верх стен водосборных резервуаров градирен следует принимать выше отметки планировки вокруг градирни не менее чем на 0,20 м.

9.1.6. Фундаменты градирен и водосборные резервуары надлежит проектировать, как правило, из монолитного железобетона.

Стены водосборных резервуаров следует предусматривать из сборного железобетона. Допускается применение металлических водосборных резервуаров для градирен, устанавливаемых на крышах зданий.

9.1.7. Стальные конструкции градирен должны быть доступными для периодических осмотров, а также повторного нанесения антикоррозионных покрытий без демонтажа оборудования.

9.1.8. Оросители следует проектировать, как правило, в виде блоков из дерева, хризотилцемента или пластмассы. Конструкция и расстановка блоков должны обеспечивать равномерное распределение стоков воды и воздуха по площади градирни.

9.1.9. Для деревянных конструкций градирен следует, как правило, применять модифицированную древесину мягколиственных пород. Допускается применять антисептированную не вымываемую антисептиками древесину хвойных пород не ниже 1-го сорта по ГОСТ 8486.

9.1.10. Сопряжения сборных железобетонных элементов градирен надлежит проектировать без открытых стальных закладных и накладных деталей. В отдельных случаях допускается применение открытых закладных и накладных деталей при условии защиты их и сварных соединений комбинированными металлоизоляционными лакокрасочными покрытиями в соответствии с требованиями СП 28.13330.

9.1.11. Бетон для конструкций градирен и материалы для его приготовления должны отвечать требованиям ГОСТ 26633.

9.1.12. Бетон железобетонных конструкций градирен необходимо принимать не ниже следующих классов по прочности на сжатие:

для плит днища водосборных резервуаров – В15;

для монолитных фундаментов (отдельно стоящих и ленточных) – В25;

для монолитных стен водосборных резервуаров и оболочек вытяжных башен – В25;

для сборных элементов наклонной колоннады башенных градирен – В30;

для сборных стен водосборных резервуаров – В25 и сборных конструкций водоохладительных устройств – В30.

9.1.13. Марки сталей стальных конструкций градирен следует принимать по группе 2 в соответствии с требованиями СП 16.13330.

9.1.14. Марки бетона по морозостойкости и водонепроницаемости железобетонных конструкций градирен в зависимости от условий эксплуатации и значений расчетных зимних температур наружного воздуха в районе строительства следует принимать по СП 31.13330.

9.1.15. Ширина продолжительного раскрытия трещин в монолитных и сборных железобетонных конструкциях градирен допускается не более 0,2 мм.

9.1.16. К градирням должны предусматриваться подъезды и площадки для установки пожарных автомобилей с целью использования воды градирен в качестве резервного источника водоснабжения при пожарах.

9.1.17. Вокруг градирен необходимо предусматривать отмостку шириной не менее 2,5 м и кюветы для сбора и отвода атмосферных вод, выносимых ветром из воздуховходных окон градирен. Территория, примыкающая к градирням, должна быть спланирована, иметь травяной покров или щебеночное покрытие.

Вентиляторные градирни

9.1.18. Секционные градирни следует проектировать, как правило, с секциями площадью не более 400 м2, а башенные вентиляторные градирни – площадью 400 м2 и более.

9.1.19. Вентиляторные градирни, собираемые из отдельных секций, состоят из каркаса, несущего блоки оросителя и вентиляторную установку, и водосборного бассейна. Их следует проектировать, как правило, с секциями площадью не более 400 м2, а башенные вентиляторные градирни – площадью 400 м2 и более.

При сгораемых каркасе или обшивке или несгораемом каркасе и сгораемой обшивке площадь сблокированных нескольких секций не должна превышать 1200 м2.

9.1.20. Сетку колонн секционных градирен следует принимать кратной 3 м, как правило, 6´6 м. Для железобетонных каркасов допускается применять сетку колонн 4´4 м, если это обусловливается технологическими требованиями.

В многосекционных градирнях водосборный резервуар должен объединять не более двух секций.

9.1.21. Расчет конструкций градирен следует производить на основные и особые сочетания нагрузок в соответствии с СП 20.13330, а также дополнительно к основным сочетаниям – на кратковременную нагрузку от веса льда, образующегося в зоне расположения оросителя, принимаемую равной 2 кПа (200 кгс/м2), с коэффициентом надежности по нагрузке gf = 1,4. Нагрузку от веса льда не следует учитывать для градирен, эксплуатируемых только в летнее время. При расчете на особые сочетания нагрузок необходимо учитывать нагрузку, вызываемую обрывом одной лопасти вентилятора (поломка оборудования).

Башенные градирни

9.1.22. Башенные градирни следует проектировать в системах оборотного производственного водоснабжения при расходах охлаждаемой воды, как правило, свыше 10 тыс. м3/ч. Температура воды, поступающей в градирню, не должна превышать плюс 50 °C.

9.1.23. Вытяжные башни градирен следует проектировать гиперболической, конической или пирамидальной формы.

9.1.24. Сетку колонн оросителя, как правило, следует принимать 6´6 м.

9.1.25. Вытяжные башни со стальным каркасом должны проектироваться с учетом их монтажа укрупненными элементами.

9.1.26. Обшивку стальных каркасов башен следует предусматривать с применением алюминиевых гофрированных листов толщиной не менее 1 мм. Допускается обшивка из хризотилцементных листов с соответствующей гидроизоляционной обработкой и пластмассовых волнистых листов, а также в отдельных случаях – из деревянных антисептированных щитов.

Хризотилцементные листы допускается применять в районах с расчетной средней температурой наиболее холодной пятидневки до минус 25 °C.

9.1.27. Крепление обшивки к каркасу градирни должно производиться оцинкованными кляммерами и болтами.

9.1.28. Градирни с железобетонными вытяжными башнями следует применять в районах с расчетной средней температурой наиболее холодной пятидневки не ниже минус 28 °C.

9.1.29. Железобетонную монолитную оболочку вытяжной башни следует принимать толщиной не менее 160 мм.

Толщину защитного слоя бетона для оболочки толщиной от 160 до 200 мм и менее, а также для сборных элементов следует принимать не менее 25 мм, а для оболочки толщиной более 200 мм – не менее 35 мм.

9.1.30. Опоры под железобетонную башню и оросительное устройство необходимо выполнять из сборного железобетона.

9.1.31. В верхней части железобетонной оболочки вытяжной башни следует предусматривать кольцо жесткости, ширина которого должна быть не менее 1 м.

9.1.32. В верхней части вытяжных башен следует предусматривать площадки для подвески люлек при ремонтных работах, а также для установки осветительных приборов для обеспечения безопасности полетов воздушных судов. В градирнях с железобетонными вытяжными башнями допускается совмещать указанные площадки с кольцами жесткости.

9.1.33. Для входа на верхнюю площадку вытяжной башни и на водоохладительное устройство необходимо предусматривать лестницу с ограждением и промежуточными площадками.

9.1.34. На площадках должны быть ограждения высотой 1,0 м.

9.1.35. Несущий каркас водоохладительного устройства следует проектировать из сборных железобетонных конструкций.

9.1.36. Оросительное устройство градирен следует проектировать одноярусным или двухъярусным из плоских прессованных хризотилцементных или пластмассовых листов. Допускается применение деревянных оросителей.

9.1.37. Расчет конструкций башенных градирен должен производиться на основные сочетания нагрузок в соответствии с СП 20.13330. Для градирен, работающих в зимнее время, следует дополнительно учитывать кратковременную нагрузку от веса льда: при расчете стальных каркасов вытяжных башен – 20 % общего веса башни, а при расчете несущего каркаса водоохладительного устройства – расчетную нагрузку в размере 3,5 кПа (350 кгс/м2) на площадь орошения.

9.2. Башенные копры предприятий по добыче полезных ископаемых

9.2.1. Требования настоящего раздела распространяются при проектировании скиповых, клетевых и скипо-клетевых башенных копров, предназначенных для размещения многоканатных подъемных машин с приводом и пускорегулирующей аппаратурой, технологического, ремонтного и вспомогательного оборудования подъема, приемных устройств и емкостей для полезных ископаемых, а при наличии свободных площадей – складских и других помещений на предприятиях по добыче полезных ископаемых подземным способом.

9.2.2. Башенные копры следует, как правило, проектировать прямоугольной или квадратной формы в плане.

Круглая или другая форма башенных копров в плане допускается при соответствующем технико-экономическом обосновании. В случае невозможности размещения отдельных частей оборудования, проходов между оборудованием и конструкцией стены в пределах габаритов копра допускается увеличивать площадь машинного зала за счет устройства эркеров.

9.2.3. Размеры башенных копров следует принимать кратными: в плане – 3 м, по высоте – 0,6 м.

Шаг колонн каркасных копров принимается кратным 3 м, в отдельных случаях при соответствующем обосновании может быть принят кратным 1,5 м.

9.2.4. Высота этажей башенных копров должна быть не менее 3,6 м, а машинных залов – не менее 8,4 м.

9.2.5. Естественное освещение следует предусматривать только в машинном зале и на лестничной клетке, в остальных помещениях следует предусматривать искусственное освещение в соответствии с требованиями СП 52.13330.

9.2.6. Монтаж оборудования следует осуществлять через монтажные проемы в стенах копра на нулевой отметке в монтажную ячейку и в перекрытиях, располагаемых одно над другим. Допускается устройство монтажного проема в стенах копра на отметке расположения монтируемого оборудования. На нулевой отметке следует предусматривать сквозные проемы в стенах для осуществления монтажа и демонтажа коммуникаций в стволе копра, осмотра, навески и смены подъемных сосудов и канатов.

9.2.7. При необходимости надвижки копров на фундаменты следует, как правило, копры выполнять со стальным каркасом.

9.2.8. Для несущих железобетонных конструкций башенных копров следует принимать бетон класса по прочности на сжатие не ниже В15.

9.2.9. Наружные стены копра и стены внутренней шахты должны, как правило, опираться на общую фундаментную плиту. В случае, когда основанием башенных копров служат скальные грунты, допускается раздельное опирание наружных стен или колонн копра на фундамент, а стен внутренней шахты или всего копра – на устье ствола шахты.

9.2.10. При опирании наружных и внутренних стен копра на общий фундамент между устьем ствола и конструкциями фундамента копра должен предусматриваться зазор, исключающий их касание при осадке и крене копра.

9.2.11. Крен и осадка башенных копров не должны превышать значений, указанных в СП 22.13330 и соответствующих условиям обеспечения работоспособности размещенных в них подъемных установок.

В случае невозможности обеспечения допустимых значений осадок путем увеличения размеров фундамента, устройством свайного основания, укреплением грунтов основания и т.д. следует использовать специальные мероприятия для возможности последующего исправления положения копра (поддомкрачивание, применение легкоплавких подушек и т.д.).

9.2.12. При расчете башенных копров нагрузки и воздействия, коэффициенты надежности по нагрузке следует принимать по СП 20.13330, а также по таблице 14.

9.2.13. При расчете стен, колонн, фундаментов и оснований копра нормативные равномерно распределенные нагрузки на перекрытия при их числе больше двух допускается снижать путем умножения их на коэффициент по формуле:

 (53)

где п – число перекрытий над рассчитываемым сечением.

9.2.14. Расчет монолитных башенных копров допускается выполнять по расчетной схеме сжато-изогнутого консольного стержня, определяя моменты от вертикальных нагрузок, с учетом эксцентриситетов от крена фундаментов.

 

Таблица 14

Классификация нагрузок

Нагрузки

Коэффициент надежности по нагрузке gf

Временные длительные

От подъемных машин, вызванные рабочими усилиями в подъемных канатах (веса канатов, подъемных сосудов, прицепных устройств и материалов в подъемном сосуде)

1,2

От проходческого оборудования при использовании башенного копра для проходки горных выработок

1,2

Давление, вызванное депрессией или компрессией

1,2

Кратковременные

От оборудования, возникающие в пускоостановочном и испытательном режимах, в том числе усилия в канатах при предохранительном торможении подъемных машин

1,0

От подвижного подъемно-транспортного оборудования, используемого при строительстве и эксплуатации (монтаж оборудования, его смена и ремонт)

1,2

От посадки клети на кулаки

1,2

Особые

Вызванные усилиями в подъемных канатах при резкой задержке (защемлении) поднимаемого сосуда в стволе шахты и при переподъеме сосуда

1,0

Примечания

1. Нормативная нагрузка от депрессии (компрессии) принимается максимально возможной с учетом перспективы развития шахты.

2. Нормативные длительные и кратковременные нагрузки от временного проходческого оборудования для поверочных расчетов постоянных шахтных копров, проектируемых с учетом использования их для проходческих работ в период строительства шахты, определяются по проекту организации проходки ствола или по заданию организации, выполняющей этот проект.

 

При расчете прочности стен несущая способность горизонтального сечения должна определяться с учетом концентрации деформаций и напряжений у проемов.

9.2.15. Нормальные сжимающие усилия в горизонтальных сечениях несущей стены копра в зоне опирания балок следует определять с учетом местного действия нагрузки от них.

В случаях, когда опирание балки осуществляется над проемом на высоте менее ширины проема, необходимо проверять расчетом прочность вертикальных и наклонных сечений стены на участке между проемом и балкой.

9.2.16. Защита конструкций копра от коррозии должна проектироваться в соответствии с СП 28.13330 с учетом воздействия минерализованной шахтной воды и исходящей вентиляционной струи, а для конструкций, находящихся в помещениях с оборудованием, подлежащим регулярной смазке, – воздействия смазочных материалов.

Все подлежащие окраске стальные конструкции копра должны проектироваться с учетом обеспечения возможности возобновления окраски, в том числе в труднодоступных местах.

9.2.17. Ширина проходов между оборудованием с неподвижными частями или ограждениями оборудования с подвижными частями, а также между оборудованием и стеной должна быть не менее 0,7 м.

9.2.18. Помещения категорий А, Б и В отделяются от других помещений противопожарными перегородками, а помещения категорий А и Б по взрывопожарной и пожарной опасности – также и пылегазонепроницаемыми перегородками в соответствии с СП 4.13130 – 12.13130.

9.2.19. Конструкции и материал стен и перегородок, которые разделяют помещения, находящиеся при различных давлениях воздуха, должны обеспечивать герметичность этих помещений.

9.2.20. В машинном зале или на перекрытии следует предусматривать уборные.

9.2.21. В башенных копрах должен быть предусмотрен внутренний водосток. Неорганизованный сброс воды с кровли не допускается.

9.2.22. В копрах следует предусматривать выход на кровлю. Кровля должна иметь ограждение по ГОСТ 25772.

9.2.23. В башенных копрах на стволах с исходящей струей воздуха вход в герметические помещения следует предусматривать через шлюзы.

9.3. Дымовые трубы

9.3.1. Требования настоящего раздела следует соблюдать при проектировании дымовых труб с несущими стволами из кирпича, железобетона и стали, обеспечивающих эффективное рассеивание дымовых газов различной температуры, влажности и агрессивности до допустимых действующими гигиеническими нормами пределов концентрации на уровне земли. Нормы данного раздела следует соблюдать при проектировании дымовых труб высотой более 15 м.

Трубы с несущими металлическими башнями (каркасами) приведены в разделе 9.4 настоящего свода правил.

9.3.2. Высота трубы определяется требованиями экологии [13], необходимым разряжением на уровне ввода газохода и требованиями межрегионального территориального управления воздушного транспорта.

9.3.3. Диаметр трубы определяется аэродинамическими, теплотехническими и санитарно-гигиенотехническими расчетами.

9.3.4. Высоту кирпичных, армокирпичных и стальных свободно стоящих (бескаркасных) труб следует принимать не более 100 м. При большей высоте применяются монолитные железобетонные трубы.

9.3.5. Трубы могут быть железобетонными (монолитными или сборными), кирпичными, из стального листа. Обычно они самонесущие. Стальные трубы из титана и композитных материалов могут иметь несущий металлический каркас или растяжки, прикрепленные к зданию.

9.3.6. Дымовые трубы следует проектировать цилиндрической или конической формы.

9.3.7. Выбор материала и конструкции дымовой трубы следует осуществлять на основании технико-экономического обоснования с учетом режима эксплуатации, специального оборудования для возведения, а также архитектурно-композиционных решений.

9.3.8. Расстояние между соседними дымовыми трубами должно быть не менее восьми средних наружных диаметров большей трубы. Если такое расположение невозможно, то необходимо предусматривать дополнительные демпферные устройства: растяжки, демпфирующая подушка под основанием или маятниковый гаситель колебаний.

9.3.9. Минимальная скорость стечения дымовых газов на выходе из дымовой трубы рекомендуется не менее 4 м/с для исключения эффекта «окутывания» верха трубы. Максимальная скорость на выходе определяется из условия отсутствия избыточного статического давления в дымовом канале (кроме металлических труб и труб с противодавлением).

9.3.10. В местах соединения газоходов с трубой надлежит предусматривать осадочные швы или компенсаторы.

9.3.11. В случае ввода в дымовую трубу в одном горизонтальном сечении двух газоходов их следует, как правило, располагать с противоположных сторон на одной оси, при вводе трех газоходов – под углом 120° один к другому, при этом суммарная площадь ослабления в одном горизонтальном сечении не должна превышать 40 % общей площади сечения ствола трубы или стакана фундамента, 30 % ствола кирпичной трубы и 20 % несущего ствола стальной трубы.

При вводах в дымовую трубу нескольких газоходов и одновременной их работе необходимо предусматривать в нижней части трубы или в стакане фундамента разделительные стенки или направляющие патрубки, исключающие взаимное влияние потоков газов, а также уменьшающие аэродинамическое сопротивление.

Примечание – Разделительные стенки не должны выполняться в распор с футеровкой, кроме того, должны быть предусмотрены «продухи» через разделительную стенку.

9.3.12. Для защиты несущего ствола дымовой трубы от температурного и агрессивного воздействия отводимых газов в необходимых случаях следует предусматривать футеровку и тепловую изоляцию ствола. В зависимости от температуры и агрессивности отводимых газов футеровку следует выполнять из шамотного, кислотоупорного или керамического кирпича, а также из специального монолитного бетона, керамики, стали и композитных материалов.

Футеровка из кирпича предусматривается звеньями, опирающимися на консольные выступы в стволе. Высота звеньев должна быть не более 25 м при толщине в один кирпич и не более 12,5 м при толщине в 1/2 кирпича. В зоне проемов для газоходов толщину футеровки следует увеличивать до 11/2 – 2 кирпичей. При применении специальной фасонной шпунтовой керамики толщина футеровки может быть уменьшена. Примыкание нижнего звена к вышележащему необходимо проектировать с учетом температурного расширения материала футеровки как по высоте, так и по диаметру.

Для обеспечения трещиностойкости футеровки от температурных усилий перепад температуры по ней не должен превышать 80 °C для кирпичных футеровок. Для монолитных футеровок может быть допущен большой температурный перепад, который необходимо учесть при расчете несущего железобетонного ствола.

9.3.13. В нижней части дымовой трубы, фундаменте или подводящих газоходах следует предусматривать проемы для осмотра трубы, а в необходимых случаях – устройства, обеспечивающие отвод конденсата.

9.3.14. С наружной стороны трубы должны предусматриваться площадки и лестницы, а для кирпичных труб – скобы. Лестницы или скобы следует устанавливать на высоте 2,5 м от поверхности земли. Площадки, лестницы и скобы должны иметь ограждения.

9.3.15. В целях предупреждения проникания дымовых газов в несущие конструкции кирпичных и железобетонных труб с газопроницаемой футеровкой не допускается избыточное статическое давление внутри дымового канала. При наличии избыточного статического давления следует проектировать трубу специальной конструкции (с внутренним газонепроницаемым газоотводящим стволом или противодавлением в вентилируемом зазоре между стволом и футеровкой).

9.3.16. В дымовых трубах с противодавлением (в зависимости от режима работы) следует применять естественную или принудительную вентиляцию воздушного зазора между стволом и футеровкой. Величина противодавления должна приниматься в каждом сечении трубы не менее 50 Па (5 кгс/м2).

9.3.17. При подключении нескольких агрегатов к трубе и колебаниях нагрузки, вызывающих образование конденсата, при технико-экономическом обосновании следует проектировать многоствольные трубы с несколькими газоотводящими стволами, расположенными внутри несущего ствола трубы.

В пространстве (в проходном зазоре) между несущим и газоотводящими стволами следует предусматривать кольцевые площадки, ходовые лестницы, электрическое освещение.

9.3.18. Минимальный диаметр верхней части наружного несущего ствола в случае расположения внутри него нескольких газоотводящих стволов следует определять из условий размещения требуемого числа газоотводящих стволов, а также необходимых проходов для монтажа, контроля в процессе эксплуатации и производства работ.

9.3.19. Газоотводящие стволы следует выполнять из металла или неметаллических несгораемых термостойких материалов. С наружной стороны газоотводящих стволов следует устанавливать тепловую изоляцию, толщина которой определяется расчетом исходя из обеспечения перепада требуемой температуры газа и внутренней поверхности ствола, а также температуры наружной поверхности тепловой изоляции не свыше 60 °C. Толщина теплоизоляции должна обеспечивать требуемую температуру в проходном зазоре между газоотводящими стволами и несущим стволом не свыше 40 °C для возможности обслуживания и ремонта трубы без остановки эксплуатации.

Газоотводящие стволы могут опираться на общий фундамент дымовой трубы или подвешиваться целиком или отдельными частями (при большой высоте трубы) на внутренних металлических несущих площадках, которые, в свою очередь, опираются на внутренние конструкции несущего ствола или башни.

9.3.20. Фундаменты дымовых труб должны проектироваться железобетонными с подошвой круглого, многоугольного или кольцевого очертания в соответствии с требованиями СП 22.13330 и СП 24.13330.

9.3.21. Предельные значения осадок и кренов для фундаментов труб должны приниматься по СП 22.13330.

9.3.22. При высоком уровне грунтовых вод и подземном расположении газоходов следует предусматривать дренаж.

9.3.23. При расчете железобетонных дымовых труб по предельным состояниям первой группы необходимо учитывать одновременное действие нагрузки от собственного веса, расчетной ветровой нагрузки, а также влияние температуры отводимых газов, при расчете по предельным состояниям второй группы – одновременное действие нагрузки от собственного веса, нагрузки от ветра, а также влияние температуры отводимых газов и солнечной радиации.

9.3.24. Нагрузки и воздействия на дымовые трубы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СП 20.13330.

Коэффициент надежности по нагрузке при расчете на ветровые нагрузки для труб высотой до 150 м принимается равным 1,4; для труб высотой от 150 до 300 м – 1,5; для труб высотой свыше 300 м – 1,6.

Примечание – При расчете стальных труб коэффициент надежности по ветровой нагрузке следует принимать равным 1,4 для труб нормального и пониженного уровня ответственности и равным 1,5 для труб повышенного уровня ответственности.

9.3.25. Перепады температур в стенке трубы от воздействия температуры отводимых газов надлежит определять на основании теплотехнических расчетов для установившегося потока тепла при наибольшем значении температуры отводимых газов и расчетной температуре наружного воздуха (средней температуре наиболее холодной пятидневки) и наибольшем значении коэффициента теплоотдачи наружной поверхности.

9.3.26. Дымовые цилиндрические трубы и трубы небольшой коничности (не более 0,012) следует рассчитывать на скоростной напор ветра и резонанс в соответствии с требованиями СП 20.13330. Конические трубы с коничностью более 0,012 на резонанс допускается не проверять.

9.3.27. В качестве расчетной схемы дымовой трубы следует принимать защемленный в основании консольный стержень постоянного или переменного по высоте кольцевого сечения.

Примечание – Для металлических труб и труб из композитных материалов с оттяжками расчетная схема принимается в виде консольного стержня, защемленного в основании с упругими опорами в местах оттяжек.

9.3.28. Определение изгибающих моментов в горизонтальных сечениях ствола трубы необходимо производить по деформированной схеме с учетом дополнительных изгибающих моментов от собственного веса вследствие прогиба трубы от воздействия ветровых нагрузок, температуры, солнечной радиации и крена фундамента.

9.3.29. Для учета кольцевых напряжений в поперечном сечении, а также дополнительных моментов от прогиба трубы при воздействии солнечной радиации необходимо учитывать распределение разности температур по наружной поверхности от 25 °C на солнечной стороне до 0 °C на границе с теневой стороной.

9.3.30. Горизонтальное перемещение верха трубы от нормативной ветровой нагрузки не должно превышать 1/75 ее высоты.

9.3.31. Расчетную длину трубы при определении форм свободных колебаний и проверке несущей способности горизонтальный сечений для свободно стоящих труб следует принимать равной высоте трубы, умноженной на коэффициент 1,12.

9.3.32. Минимальное напряжение на грунт под фундаментом трубы на естественном основании должно быть более нуля. Размеры фундаментов дымовых труб рекомендуется назначить такими, чтобы эпюра давлений под подошвой фундамента была трапециевидной с отношением краевых давлений Pmin/Pmax ³ 0,25.

9.3.33. При наличии температурного перепада по высоте плиты фундамента необходимо при расчете фундамента учитывать температурные усилия, определяемые согласно СП 27.13330.

9.3.34. При сейсмичности площадки строительства 7 баллов и выше следует проектировать дымовые трубы сейсмостойкой конструкции.

Кирпичные дымовые трубы

9.3.35. Ствол кирпичной дымовой трубы следует проектировать, как правило, в виде усеченного конуса (цоколь трубы может быть цилиндрической формы). Наклон образующей наружной поверхности ствола трубы к вертикали следует принимать, как правило, постоянным в пределах 0,02 – 0,04 на всю высоту.

9.3.36. Для кладки стволов кирпичных дымовых труб следует применять кирпич керамический для дымовых труб марок 125 – 150. Допускается применять керамический кирпич пластического прессования марки не ниже 125 и водопоглощением не более 15 %. Допускается также применение пустотелого керамического кирпича с количеством пустот не более 5 %. Марку кирпича по морозостойкости следует принимать в зависимости от режима работы трубы, но не ниже 25. Для кладки ствола необходимо использовать сложные растворы марок не ниже 50.

9.3.37. По высоте кирпичной трубы следует предусматривать горизонтальные стяжные кольца из полосовой стали, шаг и сечение которых следует принимать по расчету, при этом толщина стяжных колец должна быть не более 10 мм, шаг – не более 1,5 м.

9.3.38. Толщина стенок ствола принимается по расчету, но не менее 11/2 кирпича.

9.3.39. Расчет горизонтальных сечений ствола по несущей способности должен производиться в соответствии с СП 15.13330. Для всех горизонтальных сечений ствола точки приложения продольной силы должны находиться в пределах ядра сечения, т.е. e0 £ (D2 + d2)/8D где D и d – соответственно наружный и внутренний диаметры сечения ствола. Расчетное сопротивление кладки сжатию принимается с коэффициентом условий работы 0,9.

9.3.40. Расчет вертикальных сечений ствола на температурные усилия, вызванные перепадом температуры по толщине стенки ствола, следует производить, принимая эпюру в сжатой зоне прямоугольной. Растягивающие усилия следует воспринимать стяжными кольцами. Коэффициент условий работы при определении расчетного сопротивления стали стяжных колец следует принимать равным 0,7.

Железобетонные дымовые трубы

9.3.41. Ствол железобетонной дымовой трубы следует проектировать в форме цилиндра, усеченного конуса или комбинированной формы – в виде сочетания усеченного конуса и цилиндра. Отношение высоты всего ствола или отдельного его участка к своему наружному диаметру должно быть, как правило, не более 1/20.

Наклон образующей поверхности трубы к вертикали следует принимать, как правило, не более 0,1.

9.3.42. Сборные железобетонные дымовые трубы следует проектировать цилиндрической формы из отдельных царг. Соединение царг между собой необходимо осуществлять на высокопрочных шпильках или болтах.

9.3.43. Для стволов железобетонных монолитных труб следует применять бетон класса по прочности на сжатие не менее В22,5, с водоцементным отношением – не более 0,45. Марка бетона труб по морозостойкости должна быть не менее F200, по водонепроницаемости – W8.

Подбор состава бетона, отвечающий требованиям, указанным выше, выполняется до начала возведения ствола по заданным величинам подвижности и сохраняемости последних на материалах, имеющихся на бетонном заводе. При подборе также учитывается наличие у подрядчика оборудования (переставная или скользящая опалубки).

Для бетона стволов труб должен применяться сульфатостойкий портландцемент, сульфатостойкий портландцемент с минеральными добавками по ГОСТ 22266 или портландцемент марки не менее 400 по ГОСТ 10178.

В качестве крупного заполнителя следует предусматривать фракционированный щебень из плотных и прочных невыветривавшихся изверженных пород (гранит, сиенит, диорит и др.), отвечающий требованиям ГОСТ 8267.

Для получения бетона проектных значений следует использовать модификаторы или химические добавки в соответствии с требованиями ГОСТ 24211.

Допускается применение новых химических, в том числе модифицирующих, добавок, полученных за счет использования нанотехнологий, обеспечивающих стабильную сохраняемость подвижности бетонных смесей, и получение бетона проектных требований. Введение в бетон хлористых солей не допускается.

Примечание – В отдельных случаях при соответствующем техническом обосновании (высокие температуры дымовых газов и др.) допускается снижение марки по морозостойкости, но не ниже значений, приведенных в СП 63.13330.

9.3.44. Толщину стенок ствола железобетонной трубы следует принимать по расчету. Минимальная толщина стенки вверху монолитной трубы должна быть не менее 200 мм.

9.3.45. Армирование стенок монолитной трубы следует принимать двойным (с наружной и внутренней стороны). Сечение растянутой арматуры от площадки расчетной толщины сечения ствола трубы должно быть не менее: для кольцевой арматуры – 0,2 %, продольной – 0,4 %.

При применении переставной опалубки для возведения монолитной железобетонной дымовой трубы кольцевая арматура располагается с внутренней стороны продольной арматуры (по технологии возведения). При применении скользящей опалубки кольцевая арматура располагается с наружной стороны продольной арматуры.

9.3.46. Стыки растянутой арматуры труб рекомендуется устраивать внахлестку без сварки. Стыки продольной и горизонтальной арматуры должны располагаться вразбежку так, чтобы число стыков в сечении было не более 25 % общего числа стержней.

9.3.47. Толщину защитного слоя бетона следует принимать не менее 40 мм, а при наличии агрессивных газов дополнительно увеличивать на 5 мм.

9.3.48. Предельно допустимую температуру нагрева арматуры, выбор состава бетона в зависимости от температуры дымовых газов, дополнительные коэффициенты условий работы для расчетных сопротивлений бетона и арматуры, а также метод расчета вертикальных сечений на действие неравномерного нагрева по толщине стены следует принимать по СП 27.13330.

9.3.49. Предельная ширина раскрытия трещин в растянутой зоне сечения не должна превышать: для верхней трети высоты трубы – 0,1 мм, для нижних двух третей высоты трубы – 0,2 мм. При соответствующем обосновании допускается ширина раскрытия трещин до 0,2 мм для верхней части и до 0,3 мм для нижней части дымовой трубы.

Стальные дымовые трубы

9.3.50. Стальные дымовые трубы по конструктивной схеме подразделяются на самонесущие и трубы с дополнительными опорными конструкциями. Ствол самонесущей стальной дымовой трубы следует проектировать, как правило, состоящим из верхней цилиндрической и нижней конической частей.

9.3.51. Для свободно стоящих стальных труб соотношения размеров к общей высоте трубы должны удовлетворять следующим условиям: диаметр цилиндрической части – не менее 1/20; диаметр основания конической части – не менее 1/10; высота конической части – не менее 1/4.

Примечание – В случае установки динамических или механических гасителей колебаний диаметр цилиндрической части может быть уменьшен.

9.3.52. При проектировании стальной дымовой трубы величину предельной амплитуды горизонтального перемещения ее верха от нормативной ветровой нагрузки следует принимать исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков);

в) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида сооружения, предотвращения ощущения опасности).

Примечание – Предельную амплитуду перемещения по эстетико-психологическому требованию следует в каждом конкретном случае согласовывать с заказчиком (застройщиком) и указывать в задании на проектирование.

Рекомендуется для хорошо видимых труб принимать следующую величину предельной двойной амплитуды перемещения:

10 % верхнего наружного диаметра ствола для труб повышенного уровня ответственности;

25 % верхнего наружного диаметра ствола для труб нормального и пониженного уровня ответственности.

9.3.53. При проектировании дымовых труб с оттяжками расположение оттяжек должно приниматься следующим: высота верхней части ствола трубы над оттяжками при одном ярусе оттяжек должна составлять от 1/3 до 1/4 общей высоты трубы, при двух ярусах – не более 1/5; расстояние между ярусами оттяжек должно быть равно 1/3 высоты трубы.

9.3.54. Верх цилиндрической части следует усиливать горизонтальным ребром жесткости.

9.3.55. Технологические отверстия и проемы для подключения газоходов в оболочке дымовой трубы должны иметь круглую, овальную или прямоугольную с закругленными углами форму. Для предотвращения потери устойчивости и обеспечения требуемой прочности необходимо предусматривать дополнительное усиление оболочки в местах образования отверстий и проемов.

9.3.56. Марки сталей для дымовых труб должны приниматься в соответствии с СП 16.13330 с отнесением отдельных элементов к следующим группам:

группа 1 – оболочка и наружные ребра жесткости свободно стоящих дымовых труб;

группа 3 – внутренние опорные элементы и ребра жесткости;

группа 4 – площадки, лестницы, ограждения.

9.3.57. Расчет элементов стальных конструкций дымовых труб и определение расчетных сопротивлений материалов при температуре конструкции 300 °C и менее следует производить по СП 16.13330.

При температуре поверхности металла более 400 °C следует использовать нержавеющие и легированные стали.

Толщину оболочки ствола трубы следует принимать с учетом внутреннего и наружного припуска на коррозию. Эти припуски должны быть добавлены к толщине оболочки, полученной по результатам расчета на прочность, устойчивость и деформации.

Соединение элементов несущего ствола трубы следует выполнять фланцевыми на болтах или на сварке.

Не допускается использование в качестве наружной теплоизоляции несущих стальных дымовых труб минераловатного утеплителя с газопроницаемой обшивкой.

9.3.58. Стальные дымовые трубы при критических скоростях ветра, вызывающих резонансные колебания сооружения, следует рассчитывать на усталость в соответствии с требованиями СП 16.13330. Проверке подлежат стыковые швы стальной оболочки дымовой трубы, при этом в расчете должно учитываться не менее 2 млн. циклов нагружения.

9.3.59. Оболочки труб необходимо проверять на общую и местную устойчивость.

Следует предусматривать меры для исключения овализации оболочки и эффекта овализационной вибрации. При этом применяются кольцевые ребра жесткости или используется армированный бетон с внутренней стороны оболочки.

Места соединения цилиндрических и конических частей трубы, а также все места изменения толщины оболочки необходимо проверять на прочность с учетом дополнительных напряжений от краевого эффекта.

9.3.60. Необходимо проводить поверочный расчет стальных дымовых труб на резонансное вихревое возбуждение в соответствии с требованиями СП 20.13330.

Для предотвращения резонансного возбуждения могут быть использованы динамические и механические гасители колебаний.

9.4. Вытяжные башни

9.4.1. Требования настоящего раздела распространяются на проектирование вытяжных башен, предназначенных для удаления вредных негорючих газов, прошедших очистку, но сохраняющих определенную степень агрессивности, влажностью 80 – 90 %, содержащих конденсат и, как правило, не имеющих высокой температуры.

Вытяжные башни могут предназначаться для удаления газов или воздуха, имеющих высокую температуру (до 300 °C). При этом следует учитывать возможные изменения расчетных характеристик материалов газоотводящих стволов труб.

9.4.2. К постоянным нагрузкам вытяжных башен относятся их масса, включая фундаменты, масса и давление грунта; к длительным нагрузкам – масса частей сооружения, которые в процессе эксплуатации могут изменяться, средние скорости ветра, при которых возможно возникновение колебаний; к кратковременным нагрузкам – ветровые максимальной интенсивности, обледенение, изменение температуры в пределах одних суток, а также изменение температуры от солнечной радиации; осадки (снег, дождь, отложение пыли); к особым нагрузкам – сейсмические и взрывные воздействия, вызываемые неисправностью или поломкой оборудования, например, отказ от работы автоматических устройств, регулирующих усилие в оттяжках; неравномерность осадки основания.

9.4.3. При определении нагрузки от массы следует принимать следующие значения коэффициентов надежности по нагрузке gf:

фасонных частей и узлов – 1,2;

оборудования и массы несущих конструкций – 1,1 при расчете на прочность и 0,9 при расчете на опрокидывание и отрыв;

оттяжек мачт – 1,0.

9.4.4. При расчете на ветер следует учитывать воздействие максимальных величин скорости ветра, наблюдаемых при штормах большой длительности, максимальных в некоторых зонах, но неравномерных по высоте скоростях ветра, возникающих в пограничном слое атмосферы вследствие мезоструйных течений, локальных воздействий ветра при локальных штормах, вихревых шквалах и т.д., пульсационных воздействий ветра.

При расчете башен труб, имеющих несколько газоотводящих стволов, нагрузку на сооружение от воздействия ветра следует увеличивать за счет взаимного влияния друг на друга близко расположенных (на расстоянии менее 5 м) газоотводящих стволов.

Нормативная гололедная нагрузка и климатические воздействия определяются согласно СП 20.13330.

9.4.5. Несущие стальные стволы вытяжных башен следует проектировать по СП 16.13330.

Вытяжные башни высотой более 210 м надлежит проектировать по специально разработанным техническим условиям, содержащимся в задании на проектирование.

9.4.6. В вытяжной башне допускается установка одного или нескольких газоотводящих стволов. Один газоотводящий ствол должен быть размещен, как правило, внутри несущей башни; при наличии нескольких газоотводящих стволов допускается размещать все газоотводящие стволы внутри несущей башни или часть стволов – внутри башни, а часть – с ее внешней стороны.

9.4.7. Размеры газоотводящего ствола рекомендуется определять по технологическим расчетам, соблюдая требования санитарных норм предельных концентраций вредных выбросов в атмосферу, и принимать по таблице 15.

В реальных проектах возможны другие диаметры стальных труб.

 

Таблица 15

Высота, м

Внутренний диаметр, м

45

0,6; 0,9; 1,2; 1,5

60

0,6; 0,9; 1,2; 1,5; 1,8; 2,4

75

1,5; 1,8; 2,4; 3; 3,6

90

1,5; 1,8; 2,4; 3; 3,6; 4,8; 6

120

1,8; 2,4; 3; 3,6; 4,8; 6; 7,2

150

1,8; 2,4; 3; 3,6; 4,8; 6; 7,2

180

1,8; 2,4; 3; 3,6; 4,8; 6; 7,2

210

1,8; 2,4; 3; 3,6; 4,8; 6; 7,2

240

3,6; 4,8; 6; 7,2

Примечание – В целях использования существующего оборудования, применяемого для изготовления газоотводящих стволов из конструкционных полимерных материалов, допускается принимать независимо от высоты ствола следующие дополнительные размеры внутренних диаметров, м: для стволов из стеклопластика – 1,0; 1,6; 2,0 и 3,2; для стволов из текстофаолита – 1,2; 3,0; 3,8; 4,5 и 7,0.

 

9.4.8. Форму несущей вытяжной решетчатой башни и ее размеры следует определять с учетом обеспечения экономии стали, технологичности изготовления, условий принятого метода монтажа, рационального размещения башни на генплане и удобства эксплуатации.

9.4.9. Несущую башню, как правило, следует проектировать в виде сочетания призматической (верхней) и пирамидальной (нижней) частей с тремя, четырьмя гранями и более, в отдельных случаях – целиком призматической.

9.4.10. Разница уровней верха газоотводящего ствола и верха несущей башни должна быть в пределах 2 – 2,5 диаметра газоотводящего ствола, но не более 8 – 10 м, в конкретных случаях высота выступающих стволов определяется по конструктивным и архитектурным соображениям. При выполнении газоотводящего ствола из полимерных материалов разница определяется конструктивно с повышенными требованиями к антикоррозионной защите верхней площадки башни.

9.4.11. Наименьший габаритный размер несущей башни в нижнем основании следует назначать, как правило, не менее 1/10 ее высоты.

Наименьший габаритный размер несущей башни в верхнем основании следует определять по условиям размещения требуемого (по заданию на проектирование) числа газоотводящих стволов и лифта, а также необходимых проходов для производства ремонтных работ. В случае стесненного габарита верхней части башни (при большом диаметре газоотводящего ствола или необходимости размещения нескольких газоотводящих стволов внутри башни и стесненных условиях генплана) для проходов допускается проектировать выносные площадки-балконы. Ширина проходов должна быть не менее 0,7 м.

9.4.12. По всей высоте несущей балки необходимо предусматривать устройство горизонтальных диафрагм. Расстояние между диафрагмами следует назначать в пределах 1,5 – 2,5 габарита поперечного сечения башни в уровне установки диафрагмы. Диафрагмы также следует устанавливать в плоскости излома граней башни.

9.4.13. Диафрагмы надлежит использовать для горизонтального опирания газоотводящего ствола и как площадки, необходимые в эксплуатационных целях для обеспечения проходов вокруг газоотводящих стволов к поясам и узлам решетки несущей башни.

9.4.14. Марки сталей для несущей решетчатой башни следует принимать в соответствии с СП 16.13330 с отнесением отдельных элементов конструкции башни к следующим группам:

группа 1 – пояса несущей башни, включая фланцы, опорные узлы и анкерные устройства, узловые фасонки;

группа 2 – элементы решетки; балки, площадки-диафрагмы, непосредственно воспринимающие собственный вес газоотводящего ствола;

группа 3 – балки, площадки-диафрагмы, не воспринимающие вертикальную нагрузку от газоходов;

группа 4 – опорные плиты, настил площадок, лестницы, ограждения.

9.4.15. Газоотводящие стволы следует предусматривать из материалов, стойких против воздействия отводимых газов, или они должны иметь соответствующую антикоррозионную защиту.

Газоотводящие стволы следует проектировать из металла и конструкционных несгораемых или трудносгораемых полимерных материалов.

Марки углеродистых или низколегированных сталей для оболочки газоотводящих стволов и всех ее элементов должны назначаться по группе 4 в соответствии с СП 16.13330.

Защита от коррозии и температурных воздействий внутренних поверхностей наружных оболочек газоотводящих стволов должна осуществляться согласно новой редакции СП 28.13330.

Для газоотводящих стволов из конструкционных полимеров следует принимать химически и термически стойкие стеклопластики, текстофаолиты, бипластмассы (стеклопластики с внутренним слоем из термопласта) и слоистые конструкционные пластики.

Примечание – Конструкционные полимерные материалы, применяемые для газоотводящих стволов, должны быть несгораемыми или трудносгораемыми.

9.4.16. Для обеспечения наилучших аэродинамических свойств и экономии металла несущую башню следует, как правило, проектировать из элементов трубчатого поперечного сечения.

9.4.17. Вертикальная нагрузка от газоотводящего ствола должна передаваться в нижних уровнях вытяжной башни.

В зависимости от уровня ввода газоходов следует принимать один из следующих вариантов опирания газоотводящего ствола:

на собственный фундамент или единый фундамент сооружения;

на специальную дополнительную опору;

на одну из нижних диафрагм несущей башни (допускается при условии, что расход металла на эту диафрагму не будет превышать расход металла на специальную опору).

В отдельных случаях допускается опирать на несколько диафрагм по высоте с соответствующим обоснованием.

9.4.18. При монтаже несущей башни методом подращивания или подъема целиком необходимо производить дополнительный расчет элементов башни на монтажные нагрузки.

9.4.19. Горизонтальную нагрузку от газоотводящего ствола следует передавать на несущую башню в плоскости поперечных диафрагм башни.

Горизонтальную нагрузку от газоотводящего ствола из конструкционных полимеров, монтируемого из царг, соединенных стальным промежуточным каркасом, следует передавать также на диафрагмы башни, но через промежуточный каркас.

9.4.20. Конструктивное решение узлов опирания газоотводящего ствола на башню в местах передачи горизонтальных нагрузок должно обеспечивать свободу взаимных вертикальных и горизонтальных температурных перемещений ствола и башни.

9.4.21. Стыковочные узлы царг газоотводящих стволов должны обеспечивать кроме требований прочности и герметичности также свободу вертикальных перемещений, возникающих от температурных деформаций полимерного материала.

9.4.22. Стальной промежуточный каркас несущей башни следует проектировать, как правило, из вертикальных подвесок, горизонтальных колец и опорных элементов, при этом:

горизонтальные кольца, передающие нагрузку, должны располагаться на одном уровне с диафрагмами башни;

крепление промежуточного каркаса к башне должно обеспечивать свободу вертикальных перемещений от температурных деформаций;

по высоте промежуточный каркас следует предусматривать из отдельных секций со стыками, необходимыми для монтажа царг ствола вместе с каркасом крупными блоками методом подращивания;

вертикальные подвески каркаса следует принимать в виде гибких элементов, закрепленных в каждой секции.

9.4.23. Расчет газоотводящих стволов из конструкционных полимерных материалов следует производить с учетом анизотропии материалов.

Расчетные характеристики материалов должны быть определены с учетом максимальной температуры отводимых газов, влияния агрессивной среды и длительности действия нагрузок.

9.4.24. Фундамент газоотводящего ствола надлежит проектировать бетонным или железобетонным, как правило, в виде полого усеченного конуса или цилиндра, сплошной или кольцевой плиты.

9.4.25. Фундаменты несущей башни следует проектировать, как правило, отдельными под каждый опорный узел, при этом должны быть предусмотрены меры, обеспечивающие равномерные осадки фундаментов и горизонтальные смещения верха фундаментов, для исключения распора в металлоконструкциях башни. В отдельных случаях допускается проектировать единый фундамент под все сооружение.

9.4.26. При проектировании вытяжных башен необходимо предусматривать надежную антикоррозионную защиту фундаментов и всех конструкций газоотводящего ствола несущей башни.

9.4.27. В случаях, когда возможно образование в газоотводящем стволе конденсата, необходимо предусматривать устройство для его сбора и отвода.

9.4.28. Для ремонта и монтажа газоотводящего ствола следует предусмотреть возможность подвески его на верхней диафрагме несущей башни, а при высоте его более 150 м – также на одной из промежуточных диафрагм.

9.4.29. Для подъема на башню следует предусматривать лестницу.

Лестницу следует проектировать вертикальной с переходами на площадках-диафрагмах. При расстояниях между диафрагмами более 12 м следует предусматривать специальные промежуточные площадки. Сплошные настилы диафрагм-площадок должны иметь отверстия для удаления с их поверхности атмосферной влаги. Лестница и переходные площадки должны иметь ограждения.

9.4.30. При температуре наружной поверхности газоотводящего ствола более 50 °C примыкающие к нему площадки, лестничные пролеты и подходы должны иметь специальное ограждение высотой не менее 1 м, часть которого на высоту не менее 100 мм от уровня настила сплошная.

9.5. Водонапорные башни

9.5.1. Требования настоящего раздела следует соблюдать при проектировании водонапорных башен, предназначенных для использования в системах хозяйственно-питьевого, производственного и противопожарного водоснабжения промышленных предприятий, животноводческих ферм и комбинатов, сельскохозяйственных комплексов и населенных пунктов.

Водонапорные башни проектируют, как правило, без шатров, со стальными водонапорными баками, опорами (колоннами) из железобетона, кирпича или стали, фундаментами из сборного или монолитного железобетона.

9.5.2. Габаритные схемы водонапорных башен определяются двумя параметрами – емкостью бака и высотой до низа бака от земли.

Водонапорные башни проектируют с баками вместимостью 15, 25, 50, 100, 150, 200, 300, 500 и 800 м3. Высоту опор (от уровня земли до верха опоры бака) для башен с баками вместимостью от 15 до 50 м3 следует назначать кратной 3 м, с баками вместимостью 100 м3 и более – кратной 6 м.

Общий объем водонапорного бака водонапорной башни определяется, исходя из расчета регулирующего, противопожарного и аварийного запасов воды, в зависимости от принятой системы и схемы водопровода.

Примечание – При соответствующем технико-экономическом обосновании допускается проектировать водонапорные башни с баками большей вместимости, например, для аварийного водоснабжения доменных и мартеновских цехов металлургических заводов.

9.5.3. Форму бака следует выбирать в соответствии с архитектурно-композиционными, технико-экономическими расчетами.

В покрытии бака необходимо предусматривать люк со стремянкой для спуска в бак и трубы для вентиляции.

9.5.4. Днища бака следует проектировать с уклоном не менее 5 % к подводяще-отводящей или сливной трубе.

9.5.5. Опоры (колонны) водонапорных башен следует, как правило, проектировать в форме цилиндра или в виде системы сборных железобетонных стоек.

Допускается предусматривать для опор (колонн) монолитный железобетон, кирпичную кладку или сталь в зависимости от местных условий, технико-экономических расчетов и с учетом архитектурных требований. Нижнюю часть опор следует обсыпать землей на высоту до 2,45 м.

9.5.6. Пространство под баками допускается использовать для размещения служебных и конторских помещений, складов, производственных помещений, в случае применения сплошных конструкций опор (монолитный железобетон или кирпич) исключающих образование пыли, дыма и газовыделений.

9.5.7. Фундамент водонапорной башни, как правило, следует проектировать железобетонным монолитным, внутри которого следует предусматривать утепленные, но неотапливаемые помещения с естественной приточно-вытяжной вентиляцией для размещения задвижек на водопроводных трубах и контрольно-измерительных приборов.

9.5.8. Узлы пересечения подводяще-разводящего стояка с перекрытиями и площадками должны допускать свободу вертикальных температурных перемещений стояка.

9.5.9. При расчете башен ветровая нагрузка определяется по СП 20.13330 как для высотных сооружений с учетом динамического воздействия пульсации скоростного напора.

В случае периода свободных колебаний сооружения Т > 0,25 с ветровую нагрузку следует определять с учетом динамического воздействия пульсации скоростного напора, вызываемой порывами ветра.

Расчет башен следует выполнять для двух случаев: с заполненным или незаполненным баком.

Форма эпюры давлений под подошвой фундамента при проверке башни с заполненным баком должна быть трапециевидной с отношением минимального и максимального напряжений не менее 0,25. При проверке башни с незаполненным баком допускается треугольная эпюра напряжений.

Крен башни должен быть £ 0,004.

9.5.10. Башни следует оборудовать стальными лестницами для подъема к баку и на его покрытие, а также площадками для осмотра и обслуживания строительных конструкций и трубопроводов. Лестницы допускается проектировать вертикальными с дугами, обеспечивающими безопасность пользования ими. При этом расстояние между площадками не должно превышать 8 м. Положение трубопроводов определяется в технологической части проекта.

Площадки должны иметь перильное ограждение.

9.5.11. При проектировании водонапорных башен следует предусматривать мероприятия по антикоррозионной защите строительных конструкций. Конструктивные решения должны обеспечивать доступ осмотра и восстановления антикоррозионных покрытий.

9.5.12. Для внутренней антикоррозионной защиты баков следует применять материалы, включенные в перечни материалов и реагентов, разрешенных соответствующими организациями для применения в практике хозяйственно-питьевого водоснабжения.

 
В вашем браузере отключена поддержка Jasvscript. Работа в таком режиме затруднительна.
Пожалуйста, включите в браузере режим "Javascript - разрешено"!
Если Вы не знаете как это сделать, обратитесь к системному администратору.